www.ceejme.eu www.wsb.pl/wroclaw/ceejme

ISSN electronic version 2353-9119
Central and Eastern European Journal of Management and Economics
Vol. 5, No. 3, 277-289, September 2017

# The test of inversion in the analysis of investment funds 

## Agnieszka BUKIETYŃSKA

WSB University in Wroclaw, Poland


#### Abstract

:

Aim: The aim of the paper is to evaluate the quality of investing at OFE (open-ended pension funds) based on the data spanning the period of 2002-2010.

Design/Research method: In the study, the test of inversion was used as a measure of dependence. In the classification of the funds Sharpe measure was adopted.

Conclusions/Findings:. Contrary to common expectations, the ranking obtained based on Sharpe measure showed randomness in the ordering of funds, with the period of 2009-2010 being the only exception. These years preceded the first "reform" of OFE.

Originality/Value of the article: For the first time, apart from testing the hypothesis on ranking randomness, an analysis of Type II error was presented, that is, an error consisting in accepting null hypothesis (on randomness) despite its being false.


Keywords: Kendall's coefficient, Sharpe measure, test power, test of inversion
JEL: C12, C46

## 1. Introduction

The aim of the paper is to evaluate Open-ended Pension Funds based on historical data using the test of inversion. In examining the effectiveness of investments using Sharpe measure (Wilimowska, Wilimowski 2002), one obtains a specific order. Investors often see the order given as a guideline for future investments. Kendall's coefficient is a well-known coefficient

Correspondence Address: WSB University in Wrocław, ul. Fabryczna 29-31, 53-609 Wrocław, Poland. E-mail: agnieszka.bukietynska@wsb.wroclaw.pl
http://dx.doi.org/10.29015/ceejme. 633
used in examining rank correlation. As a measure of dependence, it is used for any sample size. Its distribution (with the exception of asymptotic distribution) is less likely to be used because of a rather difficult analytic form of the statistics used in testing the relevant hypotheses. In this work, the test of inversion will be applied which is a variant of the test based on Kendall rank correlation. For a moderate size of a sample, it appears more convenient to consider the number of inversions. The number is equal to the number of discordant pairs (in the sense outlined below) for continuously distributed variables (tied pairs are not possible then). It turns out that the language of inversion is often more convenient. This becomes especially visible for the Type II error analysis (Barra 1982).

It will be this variant of Kendall test based on inversions that will be used as a test supporting the study on the effectiveness of investments of the well-known group of funds. The numerous "reforms" of pension schemes (Oręziak 2010; Bukietyńska, Czekała 2011: 23-34) require the considerations to be limited; they begin on the date the schemes were founded and continue until 2010. In the individual years in question, Sharpe measure was used for the classification of the funds. In accordance with the assumptions underlying the financial theory, this measure should be employed in the evaluation of the portfolio quality management, yet, it also should include an element of forecasting future performance. The fact that the reforms were carried out after 2010 had no impact on the results of the analyses. It was interesting to look at whether it was possible to apply this measure to show the funds which were most likely to be ranked at the top.

## 2. Kendall's coefficient

Kendall's tau coefficient (Magiers 2002) is used to describe correlations between ordinal variables. In order to calculate Kendall's tau, all observations from the sample should be combined in all possible pairs and divided into three categories. Concordant pairs - variables which are in the first observation either bigger than in the second one, or both are smaller; the number of such pairs will be denoted as $P_{z}$. Discordant pairs - variables change inversely, that is, one of them is bigger for a given observation in the pair for which the second one is smaller; the number of such pairs will be denoted as $P_{n}$. Tied pairs - in both observations, one of the variables
has the same values, the number of such pairs - $P_{w}$. Kendall's $\tau$ estimator can be calculated from the formula:

$$
\tau=\frac{P_{z}-P_{n}}{P_{z}+P_{n}+P_{w}}
$$

The coefficient is within the interval $(-1,1)$.
Since $P_{z}+P_{n}+P_{w}=\binom{n}{2}=\frac{n(n-1)}{2}$
then

$$
\tau=2 \frac{P_{z}-P_{n}}{n(n-1)}
$$

where:
$\mathrm{n}-$. a sample size
$P_{z}$ - the number of concordant pairs
$P_{n}$ - the number of discordant pairs

## 3. Inversions

A convenient tool in the analysis of variables on the ordinal scale are permutations. A permutation is a function rearranging a set of natural numbers $\{1,2, \ldots, n\}$ onto itself. The observations of any real random variable can be ordered according to the natural order if there are no values equal to one another. This occurs with the assumption that the random variable in question is continuous.
Let

$$
N_{n}=\frac{n(n-1)}{2}
$$

be the maximum number of inversions in a permutation of n arguments.
Let ${ }_{k}^{N_{n}}$ be the number of permutation having exactly k inversions.
If $N_{1}=1$, then from the definition $\left\{\begin{array}{c}N_{1} \\ 0\end{array}\right\}=0$
For $N_{2}=2$, is $\left\{\begin{array}{c}N_{2} \\ 0\end{array}\right\}=1$ and $\left\{\begin{array}{c}N_{2} \\ 1\end{array}\right\}=1$.
For $N_{3}=3$ is $\left\{\begin{array}{c}N_{3} \\ 0\end{array}\right\}=\left\{\begin{array}{l}3 \\ 0\end{array}\right\}=1,\left\{\begin{array}{c}N_{3} \\ 1\end{array}\right\}=\left\{\begin{array}{l}3 \\ 1\end{array}\right\}=2,\left\{\begin{array}{c}N_{3} \\ 2\end{array}\right\}=\left\{\begin{array}{l}3 \\ 2\end{array}\right\}=2,\left\{\begin{array}{c}N_{3} \\ 3\end{array}\right\}=\left\{\begin{array}{l}3 \\ 3\end{array}\right\}=1$
In a similar way, for $N_{4}=6$ :

$$
\begin{gathered}
\left\{\begin{array}{c}
N_{4} \\
0
\end{array}\right\}=1,\left\{\begin{array}{c}
N_{4} \\
1
\end{array}\right\}=3,\left\{\begin{array}{c}
N_{4} \\
2
\end{array}\right\}=5,\left\{\begin{array}{c}
N_{4} \\
3
\end{array}\right\}=6 \\
\left\{\begin{array}{c}
N_{4} \\
4
\end{array}\right\}=5,\left\{\begin{array}{c}
N_{4} \\
5
\end{array}\right\}=3,\left\{\begin{array}{c}
N_{4} \\
6
\end{array}\right\}=1
\end{gathered}
$$

In general :

$$
\left\{\begin{array}{c}
N_{n}  \tag{1}\\
k
\end{array}\right\}=\sum_{i=\max (0, k-n+1)}^{k}\left\{\begin{array}{c}
N_{n-1} \\
i
\end{array}\right\}
$$

The sequence under consideration is well-known from The On-Line Encyclopedia of Integer Sequences as A008302 sequence.

Table 1. A008302 sequence for the selected $n$ and number of inversions

| $\mathbf{n} /$ Inversions | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 |  |  |  |  |  |  |  |  |
| 2 | 1 | 1 |  |  |  |  |  |  |  |
| 3 | 1 | 2 | 2 | 1 |  |  |  |  |  |
| 4 | 1 | 3 | 5 | 6 | 5 | 3 | 1 |  |  |
| 5 | 1 | 4 | 9 | 15 | 20 | 22 | 20 | 15 | 9 |
| 6 | 1 | 5 | 14 | 29 | 49 | 71 | 90 | 101 | 101 |
| 7 | 1 | 6 | 20 | 49 | 98 | 169 | 259 | 359 | 455 |
| 8 | 1 | 7 | 27 | 76 | 174 | 343 | 602 | 961 | 1415 |
| 9 | 1 | 8 | 35 | 111 | 285 | 628 | 1230 | 2191 | 3606 |
| 10 | 1 | 9 | 44 | 155 | 440 | 1068 | 2298 | 4489 | 8095 |
| 11 | 1 | 10 | 54 | 209 | 649 | 1717 | 4015 | 8504 | 16599 |

Source: Self-reported data (Bukietyńska A., Czekała M. 2017)
For $\mathrm{n}=14$, the relevant inversion numbers are presented in Figure 1.
Figure 1. The number of permutations at a specified number of inversions


[^0]
## 4. The application of the test of inversion in the evaluation of OFE funds

For all the 14 OFE funds the rates of return were calculated for the period of 2002-2010. The next step involved the calculation of Sharpe coefficient (Haugen 1996) which unfortunately turned out to be negative for 2008 and therefore the rates of return were used there.

Sharpe coefficient was calculated from the formula:

$$
S=\frac{R_{j}-R_{f}}{\sigma R_{j}},
$$

where:
$R_{j}$ - the fund's average return over the period studied
$R_{f}$ - the average risk-free rate over the period studied, in this case WIBOR 1 m $\sigma R_{j}$ - standard deviation of the rates of return over a given period

Table 2. Sharpe coefficients over the period of 2002-2010 for 14 funds

| YEAR | AEGON | Allianz | Amplico | Aviva | AXA | Generali | ING | Nordea | Pekao | PKO PB | Pocztylion | Polsat | PZU | Warta |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2002 | 0.146 | 0.234 | 0.168 | 0.095 | 0.036 | 0.112 | 0.244 | 0.226 | -0.129 | 0.293 | 0.027 | 0.067 | 0.183 | 0.035 |
| 2003 | 0.153 | 0.200 | 0.196 | 0.147 | 0.150 | 0.211 | 0.173 | 0.190 | 0.201 | 0.176 | 0.156 | 0.339 | 0.204 | 0.213 |
| 2004 | 0.543 | 0.478 | 0.577 | 0.529 | 0.731 | 0.598 | 0.477 | 0.493 | 0.728 | 0.605 | 0.549 | 0.494 | 0.581 | 0.721 |
| 2005 | 0.312 | 0.273 | 0.408 | 0.392 | 0.346 | 0.364 | 0.391 | 0.319 | 0.264 | 0.279 | 0.354 | 0.415 | 0.301 | 0.346 |
| 2006 | 0.437 | 0.530 | 0.448 | 0.456 | 0.453 | 0.570 | 0.440 | 0.413 | 0.616 | 0.446 | 0.517 | 0.667 | 0.472 | 0.472 |
| 2007 | 0.056 | 0.079 | 0.097 | 0.098 | 0.071 | 0.055 | 0.030 | 0.039 | 0.083 | -0.030 | 0.007 | -0.065 | 0.089 | -0.007 |
| 2008 | -0.608 | -0.612 | -0.631 | -0.627 | -0.589 | -0.676 | $0.578$ | -0.602 | -0.672 | -0.658 | -0.594 | -0.749 | -0.599 | -0.658 |
| 2009 | 0.371 | 0.351 | 0.334 | 0.290 | 0.339 | 0.373 | 0.310 | 0.318 | 0.342 | 0.372 | 0.335 | 0.496 | 0.288 | 0.315 |
| 2010 | 0.302 | 0.336 | 0.386 | 0.346 | 0.336 | 0.284 | 0.351 | 0.359 | 0.306 | 0.363 | 0.343 | 0.278 | 0.332 | 0.348 |

Source: Author's own calculations

Sharpe measure is precisely what provides the basis for creating the funds ranking (Reilly, Brown 2001). This method is usually employed in the evaluation of the investment quality for investment funds. In order to calculate the number of inversions, the funds were numbered depending on their rank. Which was then followed by the calculation of the number of inversions. In this way all the years were string-like compared. In Table 3 some of the calculations for 2008 and 2009 are presented.

Table 3. Sharpe ratios comparison for 2008 and 2009

| Sharpe | $\mathbf{2 0 0 8}$ | no | $\mathbf{m 2 0 0 8}$ | $\mathbf{m 2 0 0 9}$ | Sharp | 2009 | no |
| :---: | :--- | :---: | :---: | :---: | :---: | :--- | :---: |
| -0.01022 | Allianz Polska | 2 | 1 | 5 | 0.495678 | Polsat | 12 |
| -0.01074 | AXA | 5 | 2 | 7 | 0.372974 | Generali | 6 |
| -0.01077 | Pocztylion | 11 | 3 | 8 | 0.371857 | PKO PB | 10 |
| -0.01111 | Nordea | 8 | 4 | 10 | 0.370536 | AEGON | 1 |
| -0.0114 | AEGON | 1 | 5 | 4 | 0.350824 | Allianz Polska | 2 |
| -0.0115 | Generali | 6 | 6 | 2 | 0.341838 | Pekao | 9 |
| -0.01183 | PKO PB | 10 | 7 | 3 | 0.339444 | AXA | 5 |
| -0.01186 | Amplico OFE | 3 | 8 | 9 | 0.335289 | Pocztylion | 11 |
| -0.01220 | PZU Złota Jesień | 13 | 9 | 14 | 0.333830 | Amplico OFE | 3 |
| -0.01234 | Warta | 14 | 10 | 11 | 0.318366 | Nordea | 8 |
| -0.01253 | ING | 7 | 11 | 12 | 0.315157 | Warta | 14 |
| -0.01259 | Pekao | 9 | 12 | 6 | 0.310295 | ING | 7 |
| -0.01326 | Aviva | 4 | 13 | 13 | 0.290172 | Aviva | 4 |
| -0.01587 | Polsat | 12 | 14 | 1 | 0.287749 | PZU Złota Jesień | 13 |

Source: Author's own calculations.
Table 4 contains analogous - together with the ranking - calculations for 2009 (repeating the calculations from Table 3) and 2010.

Table 4. Sharpe ratios comparison for 2009 and 2010

| Sharpe | $\mathbf{2 0 0 9}$ | no | $\mathbf{m 2 0 0 9}$ | $\mathbf{m 2 0 1 0}$ | Sharp | 2010 | no |
| :---: | :--- | :---: | :---: | :---: | :---: | :--- | :---: |
| 0.495678 | Polsat | 12 | 1 | 14 | 0.385618 | Amplico OFE | 3 |
| 0.372974 | Generali | 6 | 2 | 13 | 0.363325 | PKO PB Bankowy | 10 |
| 0.371857 | PKO PB Bankowy | 10 | 3 | 2 | 0.359113 | Nordea | 8 |
| 0.370536 | AEGON | 1 | 4 | 12 | 0.351476 | ING | 7 |
| 0.350824 | Allianz Polska | 2 | 5 | 9 | 0.348023 | Warta | 14 |
| 0.341838 | Pekao | 9 | 6 | 11 | 0.346011 | Aviva | 4 |
| 0.339444 | AXA | 5 | 7 | 8 | 0.343285 | Pocztylion | 11 |
| 0.335289 | Pocztylion | 11 | 8 | 7 | 0.336281 | AXA | 5 |
| 0.333830 | Amplico OFE | 3 | 9 | 1 | 0.336131 | Allianz Polska | 2 |
| 0.318366 | Nordea | 8 | 10 | 3 | 0.332437 | PZU Złota Jesień | 13 |
| 0.315157 | Warta | 14 | 11 | 5 | 0.306408 | Pekao | 9 |
| 0.310295 | ING | 7 | 12 | 4 | 0.301738 | AEGON | 1 |
| 0.290172 | Aviva | 4 | 13 | 6 | 0.283659 | Generali | 6 |
| 0.287749 | PZU Złota Jesień | 13 | 14 | 10 | 0.278029 | Polsat | 12 |

Source: Author's own calculations.

Next, the number of inversions and probabilities were calculated.
The maximum number of inversions was calculated from the formula $N_{n}=\frac{n(n-1)}{2}=\frac{14(14-1)}{2} 91$

Table 5. The number of inversions over the period of 2002-2006

| m2002 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m2003 | 9 | 10 | 6 | 8 | 4 | 7 | 12 | 3 | 14 | 1 | 13 | 2 | 11 | 5 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | inversion | max | p | average |
| 1.inw | 8 | 8 | 5 | 6 | 3 | 4 | 5 | 2 | 5 | 0 | 3 | 0 | 1 | 0 | 50 | 91 | 0.549 | 45.5 |
| m2003 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |  |  |  |  |
| m2004 | 11 | 3 | 5 | 6 | 2 | 13 | 7 | 12 | 4 | 14 | 8 | 9 | 1 | 10 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | inversion | max | P | Average |
| 1.inw | 10 | 2 | 3 | 3 | 1 | 7 | 2 | 5 | 1 | 4 | 1 | 1 | 0 | 0 | 40 | 91 | 0.44 | 45.5 |
| m2004 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |  |  |  |  |
| m2005 | 7 | 14 | 8 | 12 | 5 | 11 | 2 | 6 | 10 | 3 | 1 | 9 | 13 | 4 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | inversion | max | P | Average |
| 1.inw | 6 | 0 | 6 | 9 | 4 | 7 | 1 | 3 | 4 | 1 | 0 | 1 | 0 | 0 | 42 | 91 | 0.462 | 45.5 |
| m2005 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |  |  |  |  |
| m2006 | 1 | 10 | 8 | 12 | 3 | 5 | 9 | 7 | 14 | 13 | 6 | 11 | 4 | 2 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | inversion | max | P | Average |
| 1.inw | 0 | 8 | 6 | 8 | 1 | 2 | 4 | 3 | 5 | 4 | 2 | 2 | 1 | 0 | 46 | 91 | 0.505 | 45.5 |

Source: Author's own calculations
In Table 5, the numbers of inversions calculated did not differ much from the average number of inversions which was at 45.5 . This does not provide yet a basis for drawing conclusions.

Table 6. The number of inversions over the period of 2006-2010

| m2006 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m2007 | 14 | 1 | 8 | 5 | 11 | 4 | 12 | 2 | 6 | 3 | 13 | 10 | 7 | 9 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | inversion | max | p | average |
| 1.inw | 13 | 0 | 6 | 3 | 7 | 2 | 6 | 0 | 1 | 0 | 3 | 2 | 0 | 0 | 43 | 91 | 0.473 | 45.5 |
| m2007 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |  |  |  |  |
| m2008 | 12 | 13 | 8 | 9 | 1 | 2 | 5 | 6 | 4 | 11 | 3 | 10 | 7 | 14 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | inversion | max | P | Average |
| 1.inw | 11 | 11 | 7 | 7 | 0 | 0 | 2 | 2 | 1 | 3 | 0 | 1 | 0 | 0 | 45 | 91 | 0.495 | 45.5 |
| m2008 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |  |  |  |  |
| m2009 | 5 | 7 | 8 | 10 | 4 | 2 | 3 | 9 | 14 | 11 | 12 | 6 | 13 | 1 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | inversion | max | P | Average |
| 1.inw | 4 | 5 | 5 | 6 | 3 | 1 | 1 | 2 | 5 | 2 | 2 | 1 | 1 | 0 | 38 | 91 | 0.418 | 45.5 |
| m2009 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |  |  |  |  |
| m2010 | 14 | 13 | 2 | 12 | 9 | 11 | 8 | 7 | 1 | 3 | 5 | 4 | 6 | 10 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | inversion | max | P | Average |
| 1.inw | 13 | 12 | 1 | 10 | 7 | 8 | 6 | 5 | 0 | 0 | 1 | 0 | 0 | 0 | 63 | 91 | 0.692 | 45.5 |

Source: Author's own calculations
In Table 6, in the majority of cases the numbers of inversions calculated did not differ much from the average inversion number at 45.5. However, over the period of 2009 and 2010, the number of
inversions observed differed rather significantly from the average that was at 45.5 . Based on formula (1) a distribution function for the number of inversions was determined.

## Figure 2. The distribution function for inversions



Source: Author's own study.
The hypothesis for 2008/2009 is tested:

$$
\begin{aligned}
& H_{0}: P I=0.5 \\
& H_{1}: P I<0.5
\end{aligned}
$$

The number of inversions $\mathrm{I}=38$

$$
P\left(I \leq 38 / H_{0}\right)=0.225
$$

For 2009/2010

$$
\begin{aligned}
& H_{0}: P I=0.5 \\
& H_{1}: P I>0.5
\end{aligned}
$$

The number of inversions $I=63$

$$
P\left(I \geq 63 / H_{0}\right)=0.018
$$

For the significance levels commonly employed (in this case $\alpha=0.05$ ) one can notice that in the first case there are no grounds for rejecting $H_{0}$, whereas in the second case $-H_{0}$ is rejected.

The results covering all the years studied are presented in Table 7.

Table 7. Hypothesis testing for the period of 2002-2010

| years | number of Inversions | p-value | DECISION |
| :---: | :---: | :---: | :---: |
| $2002 / 2003$ | 50 | 0.705 | accept $H_{0}$ |
| $2003 / 2004$ | 40 | 0.295 | accept $H_{0}$ |
| $2004 / 2005$ | 42 | 0.374 | accept $H_{0}$ |
| $2005 / 2006$ | 46 | 0.543 | accept $H_{0}$ |
| $2006 / 2007$ | 43 | 0.415 | accept $H_{0}$ |
| $2007 / 2008$ | 45 | 0.500 | accept $H_{0}$ |
| $2008 / 2009$ | 38 | 0.225 | accept $H_{0}$ |
| $2009 / 2010$ | 63 | 0.018 | reject $H_{0}$ |

Source: Author's own study.
The decisions presented in Table 7 in the vast majority of cases do not question the hypothesis tested. This means that Sharpe measure as a criterion for the quality of investment decisions does not have a forecasting value in the majority of cases. The arrangement of the funds analyzed appears to be incidental.

It turns out that the method analyzed together with the application of a precise distribution of the number of inversions may be used in the analysis of the test power. To this end the theorem proved in (Bukietyńska, Czekała 2017: 175-185) can be used.

## 5. Theorem

The distribution of the number of inversions at the inversion probability equal to p (and $q=1-p)$ is expressed by the formula:

$$
P\left(I_{n}=k\right)=\left(\left\{\begin{array}{c}
N_{n} \\
k
\end{array}\right\} p^{k} q^{N_{n}-k}\right) / \sum_{k=0}^{N_{n}}\left\{\begin{array}{c}
N_{n} \\
k
\end{array}\right\} p^{k} q^{N_{n}-k}=\left(p_{n, k} \cdot p^{k} q^{N_{n}-k}\right) / \sum_{k=0}^{N_{n}} p_{n, k} \cdot p^{k} q^{N_{n}-k}
$$

In the above theorem, values $p_{n, k}$ denote the probability that k inversions will occur in a sequence of length n , while assuming that the probability of inversion is at $\mathrm{p}=0.5$.

The distribution function of the number of inversions was calculated based on the above formula. This allows for the calculation of the probability that Type II error will be made for selected values p in an alternative hypothesis.

Table 8. The distribution function for the number of inversions for selected inversion probabilities

| p/k | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.5 | $1.14707 \mathrm{E}-11$ | $1.61 \mathrm{E}-10$ | $1.19 \mathrm{E}-09$ | $6.25 \mathrm{E}-09$ | $2.59 \mathrm{E}-08$ | $9.05 \mathrm{E}-08$ | $2.76 \mathrm{E}-07$ |
| 46/91 | $4.13556 \mathrm{E}-12$ | $5.91 \mathrm{E}-11$ | $4.48 \mathrm{E}-10$ | $2.4 \mathrm{E}-09$ | $1.01 \mathrm{E}-08$ | $3.61 \mathrm{E}-08$ | $1.13 \mathrm{E}-07$ |
| 50/91 | $2.83217 \mathrm{E}-16$ | $4.77 \mathrm{E}-15$ | $4.27 \mathrm{E}-14$ | $2.69 \mathrm{E}-13$ | $1.34 \mathrm{E}-12$ | $5.64 \mathrm{E}-12$ | $2.07 \mathrm{E}-11$ |
| 63/91 | $6.29862 \mathrm{E}-36$ | $1.91 \mathrm{E}-34$ | $3.06 \mathrm{E}-33$ | $3.47 \mathrm{E}-32$ | 3.12E-31 | $2.36 \mathrm{E}-30$ | $1.56 \mathrm{E}-29$ |
| 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| $7.57 \mathrm{E}-07$ | $1.9 \mathrm{E}-06$ | $4.41 \mathrm{E}-06$ | $9.6 \mathrm{E}-06$ | $1.97 \mathrm{E}-05$ | $3.86 \mathrm{E}-05$ | $7.23 \mathrm{E}-05$ | 0.00013 |
| $3.15 \mathrm{E}-07$ | $8.05 \mathrm{E}-07$ | $1.91 \mathrm{E}-06$ | $4.24 \mathrm{E}-06$ | 8.9E-06 | $1.78 \mathrm{E}-05$ | $3.39 \mathrm{E}-05$ | 6,22E-05 |
| $6.84 \mathrm{E}-11$ | $2.06 \mathrm{E}-10$ | $5.76 \mathrm{E}-10$ | $1.51 \mathrm{E}-09$ | $3.73 \mathrm{E}-09$ | $8.77 \mathrm{E}-09$ | $1.97 \mathrm{E}-08$ | 4,27E-08 |
| $9.27 \mathrm{E}-29$ | $5.04 \mathrm{E}-28$ | $2.54 \mathrm{E}-27$ | $1.2 \mathrm{E}-26$ | $5.37 \mathrm{E}-26$ | $2.28 \mathrm{E}-25$ | $9.28 \mathrm{E}-25$ | 3,63E-24 |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\cdots$ | $\cdots$ |
| 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 |
| 0.05051 | 0.063394 | 0.078582 | 0.096254 | 0.116556 | 0.13959 | 0.165406 | 0,193994 |
| 0.03297 | 0.042151 | 0.053214 | 0.066374 | 0.081827 | 0.099749 | 0.120283 | 0,143527 |
| 0.000301 | 0.00045 | 0.000665 | 0.000969 | 0.001396 | 0.001987 | 0.002795 | 0,003885 |
| $3.42 \mathrm{E}-16$ | $9.27 \mathrm{E}-16$ | $2.48 \mathrm{E}-15$ | $6.54 \mathrm{E}-15$ | $1.7 \mathrm{E}-14$ | $4.39 \mathrm{E}-14$ | $1.11 \mathrm{E}-13$ | 2,8E-13 |
| $\ldots$ |
| 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 0.414955 | 0.457242 | 0.5 | 0.542758 | 0.585045 | 0.626406 | 0.666413 | 0,70468 |
| 0.338365 | 0.378465 | 0.419913 | 0.462281 | 0.505114 | 0.54794 | 0.590285 | 0,631689 |
| 0.022298 | 0.028768 | 0.036747 | 0.046477 | 0.058212 | 0.072209 | 0.088721 | 0,107981 |
| $5.51 \mathrm{E}-11$ | $1.28 \mathrm{E}-10$ | $2.93 \mathrm{E}-10$ | $6.66 \mathrm{E}-10$ | $1.49 \mathrm{E}-09$ | $3.32 \mathrm{E}-09$ | $7.29 \mathrm{E}-09$ | 1,58E-08 |
| $\ldots$ | ... | $\ldots$ | ... | $\ldots$ | $\ldots$ | $\ldots$ | $\cdots$ |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 |
| 0.960272 | 0.969171 | 0.976412 | 0.982217 | 0.9868 | 0.990361 | 0.993081 | 0,995123 |
| 0.94019 | 0.952724 | 0.96315 | 0.971694 | 0.978589 | 0.984065 | 0.988341 | 0,991623 |
| 0.514529 | 0.562994 | 0.611084 | 0.658101 | 0.703367 | 0.746255 | 0.786216 | 0,822802 |
| 3.78E-05 | 7.13E-05 | 0.000132 | 0.000243 | 0.000439 | 0.000782 | 0.001372 | 0,002367 |
| $\cdots$ | $\ldots$ |
| 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0.999999 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0.99984 | 0.999937 | 0.999978 | 0.999994 | 0.999999 | 1 | 1 | 1 |
| 0.751575 | 0.839522 | 0.908288 | 0.955428 | 0.982702 | 0.995225 | 0.999296 | 1 |

Source: Author's own calculations.

Figure 3. The distribution function of the number of inversions for selected inversion probabilities


Source: self-reported data.

## 6. Type II error

In order to evaluate the power of the test, the probability of Type II error $\beta$ is to be calculated. Type II error is to accept hypothesis $H_{0}$ when it is false, which means that $H_{1}$ is the true hypothesis. These errors will be calculated for selected values of probabilities, that is, for $\frac{46}{91}$, $\frac{50}{91}$ and $\frac{63}{91}$.

$$
\begin{gathered}
\beta=P\left(\operatorname{accep} H_{0} / H_{1}\right)=P\left(\operatorname{accept} H_{0} / p=\frac{46}{91}\right)=P\left(I_{14} \geq 61 / p=\frac{46}{91}\right)=0.94 \\
\beta=P\left(\operatorname{accep} H_{0} / H_{1}\right)=P\left(\operatorname{accept} H_{0} / p=\frac{50}{91}\right)=P\left(I_{14} \geq 61 / p=\frac{50}{91}\right)=0.515 \\
\beta=P\left(\operatorname{accep} H_{0} / H_{1}\right)=P\left(\operatorname{accept} H_{0} / p=\frac{63}{91}\right)=P\left(I_{14} \geq 61 / p=\frac{63}{91}\right)=3.78 \cdot 10^{-5}
\end{gathered}
$$

These probabilities were taken from Table 8 for 61 inversions. While using the theorem
cited above, it is possible to create a complete version of this table.

## 7. Findings

The findings are two-fold. From the standpoint of the economic analysis, the fact that there are no reasons for rejecting null hypothesis attests to a complete randomness of the ranking. The financial results of the funds analyzed may change year by year with the probability at 0,5 (null hypothesis), with the period of 2009-2010 being the only exception (data in Table 7). In this case, however, the conclusion is even further - reaching. The probability of inversions that is above 0,5 (as the alternative hypothesis states) suggests that high ranking in one year makes a drop in ranking in the following year more likely.

The second kind of findings is strictly statistic in nature. The theorem cited allowed for calculating the probability that Type II error will be made for selected values adopted in the alternative hypothesis. The theorem and calculations conducted on its basis in Table 8 provide a useful tool for testing hypotheses on correlations in the case of an ordinal scale. Based on the theorem, it is possible to calculate the Type II error at any alternative. For the cases presented in the paper this probability was as high as 0,94 , when $p=\frac{46}{91}$ was adopted in the alternative hypothesis. This last value differs slightly from the one proposed in the hypothesis tested. If $p=$ $\frac{50}{91}$, a considerable increase in the test power was observed. The case that was most suggestive was when $p=\frac{63}{91}$; then the probability of Type II error takes on a very low value (Barra 1982).

## THE TEST OF INVERSION IN THE ANALYSIS OF INVESTMENT FUNDS

## Bibliography

Barra J.R. (1982), Matematyczne podstawy statystyki (Mathematical basis of statistics), Państwowe Wydawnictwo Naukowe, Warszawa.

Bukietyńska A., Czekała M. (2011), Otwarte Fundusze Emerytalne w latach 2000-2010 a przyrost PKB w Polsce (Open Pension Funds and the GPD growth in Poland), „Zeszyty Naukowe WSB", no. 22, pp. 23-34.

Bukietyńska A., Czekała M. (2017), Distribution of inversions and the power of the $\tau$-Kendall's test information systems architecture and technology, in: Proceedings of 37th International Conference on Information Systems Architecture and Technology - ISAT 2016 - Part III, ed. Świątek J., Wilimowska Z., Borzemski L., Grzech A., Springer, Cham, pp. 175-185.

Ferguson S., Genest Ch., Hallin M. (2011), Kendall's tau for autocorrelation, Department of Statistics Papers, UCLA, Los Angeles.

Haugen R.A. (1996), Teoria nowoczesnego inwestowania (Modern investment theory), WIG Press, Warszawa.
Kendall M.G., Buckland W.R. (1960), A Dictionary of statistical terms, Oliver and Boyd, Edinburgh, London.
Magiera R. (2002), Modele i metody statystyki matematycznej (Models and methods of mathematical statistics), Oficyna Wydawnicza GiS, Wrocław.

OEIS (The On-Line Encyclopedia of Integer Sequences) (2017), https://oeis.org/?language=polish [15.01.2017].
Oręziak L. (2010), OFE. Katastrofa prywatyzacji emerytur w Polsce (Open Pension Funds. Catastrophe of private pensions in Poland), Instytut Wydawniczy Książka i Prasa, Warszawa.

Reilly F.K., Brown K.C. (2001), Analiza inwestycji i zarządzanie portfelem (Investment analysis and portfolio management), Polskie Wydawnictwo Ekonomiczne, Warszawa.

Wilimowska Z., Wilimowski M. (2002), Sztuka zarządzania finansami (The art of finance management), Oficyna Wydawnicza Ośrodka Postępu Organizacyjnego, Bydgoszcz.


[^0]:    Source: Author's own calculations.

